36. 有效的数独¶
难度:中等
题目¶
判断一个 9x9 的数独是否有效。只需要根据以下规则,验证已经填入的数字是否有效即可。
- 数字
1-9
在每一行只能出现一次。 - 数字
1-9
在每一列只能出现一次。 - 数字
1-9
在每一个以粗实线分隔的3x3
宫内只能出现一次。
上图是一个部分填充的有效的数独。
数独部分空格内已填入了数字,空白格用'.'
表示。
示例 1:
输入:
[
["5","3",".",".","7",".",".",".","."],
["6",".",".","1","9","5",".",".","."],
[".","9","8",".",".",".",".","6","."],
["8",".",".",".","6",".",".",".","3"],
["4",".",".","8",".","3",".",".","1"],
["7",".",".",".","2",".",".",".","6"],
[".","6",".",".",".",".","2","8","."],
[".",".",".","4","1","9",".",".","5"],
[".",".",".",".","8",".",".","7","9"]
]
输出: true
示例 2:
输入:
[
["8","3",".",".","7",".",".",".","."],
["6",".",".","1","9","5",".",".","."],
[".","9","8",".",".",".",".","6","."],
["8",".",".",".","6",".",".",".","3"],
["4",".",".","8",".","3",".",".","1"],
["7",".",".",".","2",".",".",".","6"],
[".","6",".",".",".",".","2","8","."],
[".",".",".","4","1","9",".",".","5"],
[".",".",".",".","8",".",".","7","9"]
]
输出: false
解释: 除了第一行的第一个数字从 5 改为 8 以外,空格内其他数字均与 示例1 相同。
但由于位于左上角的 3x3 宫内有两个 8 存在, 因此这个数独是无效的。
说明:
- 一个有效的数独(部分已被填充)不一定是可解的。
- 只需要根据以上规则,验证已经填入的数字是否有效即可。
- 给定数独序列只包含数字 1-9 和字符 '.' 。
- 给定数独永远是 9x9 形式的。
题解¶
基本思路: 根据定义直接判断输入的数组是否满足数独的3个条件即可。
代码如下:
bool isValidSudoku(char** board, int boardSize, int* boardColSize){
int i = 0, j = 0, positions1[boardSize], positions2[boardSize], k = 0;
for (i = 0; i < boardSize; i++)
{
memset(positions1, 0, sizeof(int) * boardSize);
memset(positions2, 0, sizeof(int) * boardSize);
for (j = 0; j < boardSize; j++)
{
if (board[i][j] > '0' && positions1[board[i][j] - '1'])
return false;
if (board[j][i] > '0' && positions2[board[j][i] - '1'])
return false;
if (board[i][j] > '0')
positions1[board[i][j] - '1'] = 1;
if (board[j][i] > '0')
positions2[board[j][i] - '1'] = 1;
}
}
for (i = 0; i < 3; i++)
{
for (j = 0; j < 3; j++)
{
memset(positions1, 0, sizeof(int) * boardSize);
for (k = 0; k < boardSize; k++)
{
if (board[i * 3 + k % 3][j * 3 + k / 3] > '0' && positions1[board[i * 3 + k % 3][j * 3 + k / 3] - '1'])
return false;
if (board[i * 3 + k % 3][j * 3 + k / 3] > '0')
positions1[board[i * 3 + k % 3][j * 3 + k / 3] - '1'] = 1;
}
}
}
return true;
}